Refinements of Beck-type partition identities

نویسندگان

چکیده

Franklin's identity generalizes Euler's and states that the number of partitions n with j different parts divisible by r equals repeated at least times. In this article, we give a refinement when j=1. We prove j=1, r=2 for fixed perimeter, i.e., largest hook. also derive Beck-type perimeter: excess in all into odd perimeter M over distinct whose set even is singleton. provide analytic combinatorial proofs our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition Identities

A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ = (λ1, λ2, . . . , λk) of non-negative integers λi such that ∑k i=1 λi = n. The λi’s are the parts of the partition λ. Integer partitions are of particular interest in combinatorics, partly because many profound questions concerning integer partitions, solved and unsolved, are easily stated, but not ...

متن کامل

Refinements of Some Partition Inequalities

In the present paper we initiate the study of a certain kind of partition inequality, by showing, for example, that if M 5 is an integer and the integers a and b are relatively prime to M and satisfy 1  a < b < M/2, and the c(m,n) are defined by 1 (sqa, sqM a; qM )1 1 (sqb, sqM b; qM )1 := X

متن کامل

Identities from Partition Involutions

Subbarao and Andrews have observed that the combinatorial technique used by F. Franklin to prove Eulers famous partition identity (l-x)(l-x)(l-x)(l-x*) ••• = 1-x-x +x +x -x -x + ••• can be applied to prove the more general formula l-x-xy(l-xy) -xy(±-xy)(±-xy) xy (1 xy) (1 xy) (1 xy) = 1 -x-xy+xy+xy -xy -xy + • •• which reduces to Eulers when y = 1. This note shows that several finite versions o...

متن کامل

Partition Identities Arising from Theta Function Identities

The authors show that certain theta function identities of Schröter and Ramanujan imply elegant partition identities.

متن کامل

Refinements of the Rogers-Ramanujan Identities

Refinements of the classical Rogers-Ramanujan identities are given in which some parts are weighted. Combinatorial interpretations refining MacMahon’s results are corollaries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2022

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2022.113110